Modelos lineales generalizados

Javier Fernández-López, Profesor Ayudante Doctor
Unidad de Matemática Aplicada
Departamento de Biodiversidad, Ecología y Evolución, UCM

DOKTOREGO ESKOLA ESCUELA DE DOCTORADO DOCTORAL SCHOOL Programas de doctorado:
Agrobiología Ambiental

Calidad y Seguridad Alimentaria

Biodiversidad, Funcionamiento y Gestión de Ecosistemas

Bloque 2: Modelos lineales generalizados

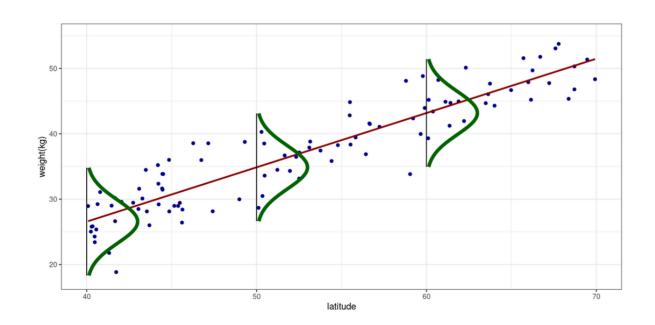
- Extendiendo el modelo lineal: factores categóricos
- Función vínculo: más allá de la distribución normal
- Evaluación y selección de modelos
- Predicciones

Factores de clasificación: predictores categóricos

 $weight_i \sim Normal(\mu_i, \sigma)$

$$\mu_i = eta_0 + eta_1 X_i$$

Predictor cuantitativo continuo



i	concentrción	lote
1	27	A
2	35	A
3	34	A
3	42	В
3	46	В
•••	•••	•••
n	50	В

i	concentrción	lote
1	27	A
2	35	A
3	34	A
3	42	В
3	46	В
		•••
n	50	В

$$y_i \sim ext{Normal}(\mu_i, \sigma) \ \mu_i = eta_0 + eta_1 \cdot ext{factor}_i$$

i	concentrción	lote	dummy
1	27	A	0
2	35	A	0
3	34	A	0
3	42	В	1
3	46	В	1
•••	•••	•••	•••
n	50	В	1

$$y_i \sim ext{Normal}(\mu_i, \sigma) \ \mu_i = eta_0 + eta_1 \cdot ext{factor}_i$$

$$factor_i = \begin{cases} 0, & \text{si el individuo } i \text{ pertenece al primer nivel del factor} \\ 1, & \text{si el individuo } i \text{ pertenece al segundo nivel del factor} \end{cases}$$

i	concentrción	lote	dummy
1	27	A	0
2	35	A	0
3	34	A	0
3	42	В	1
3	46	В	1
		•••	
n	50	В	1

$$y_i \sim ext{Normal}(\mu_i, \sigma) \ \mu_i = eta_0 + eta_1 \cdot ext{factor}_i lacksquare 0$$

$$factor_i = \begin{cases} 0, & \text{si el individuo } i \text{ pertenece al primer nivel del factor} \\ 1, & \text{si el individuo } i \text{ pertenece al segundo nivel del factor} \end{cases}$$

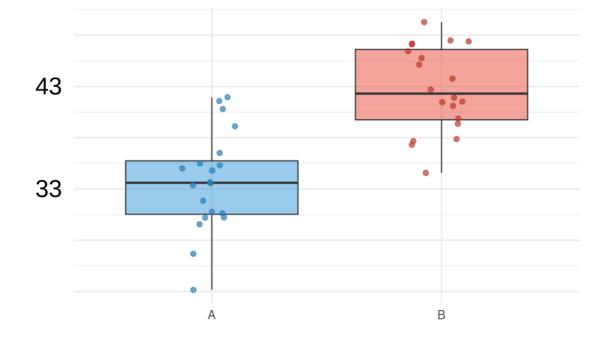
i	concentrción	lote	dummy	
1	27	A	0	
2	35	A	0	
3	34	A	0	
3	42	В	1	
3	46	В	1	
		•••		
n	50	В	1	

$$y_i \sim \operatorname{Normal}(\mu_i, \sigma)$$
 $\mu_i = \beta_0 + \beta_1 \cdot \operatorname{factor}_i$

$$factor_i = \begin{cases} 0, & \text{si el individuo } i \text{ pertenece al primer nivel del factor} \\ 1, & \text{si el individuo } i \text{ pertenece al segundo nivel del factor} \end{cases}$$

i	concentrción	lote	dummy
1	27	A	0
2	35	A	0
3	34	A	0
3	42	В	1
3	46	В	1
	•••	•••	
n	50	В	1

$$y_i \sim ext{Normal}(\mu_i, \sigma) \ \mu_i = eta_0 + eta_1 \cdot ext{factor}_i$$

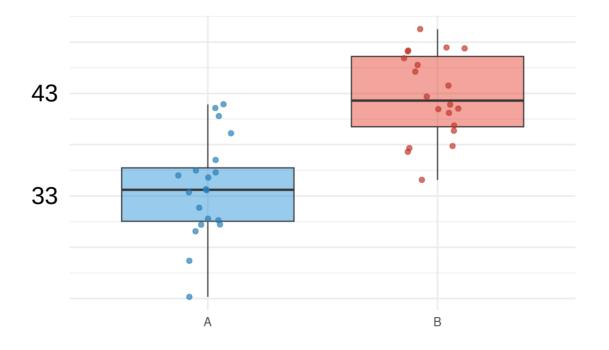


Factores de clasificación: predictores categóricos

i	concentrción	lote	dummy	
1	27	A	0	
2	35	A	0	
3	34	A	0	
3	42	В	1	
3	46	В	1	
		•••		
n	50	В	1	

$$y_i \sim ext{Normal}(\mu_i, \sigma) \ \mu_i = eta_0 + eta_1 \cdot ext{factor}_i$$

ANOVA ANalysis Of VAriance



Factores de clasificación: predictores categóricos

i	concentrción	lote	dummy
1	27	A	0
2	35	A	0
3	34	A	0
3	42	В	1
3	46	В	1
	•••	•••	
n	50	В	1

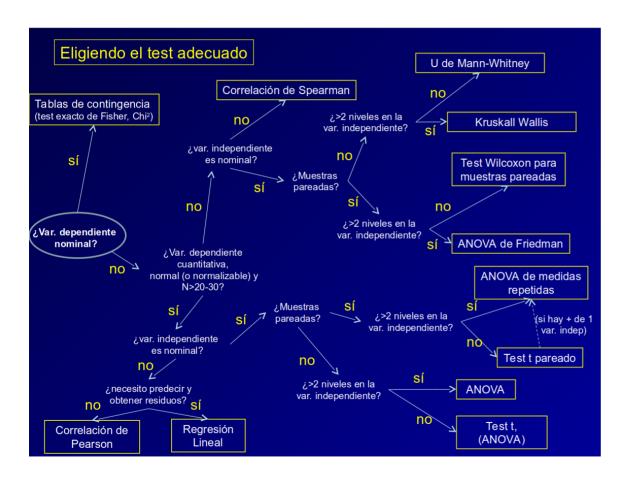
$$y_i \sim ext{Normal}(\mu_i, \sigma) \ \mu_i = eta_0 + eta_1 \cdot ext{factor}_i$$

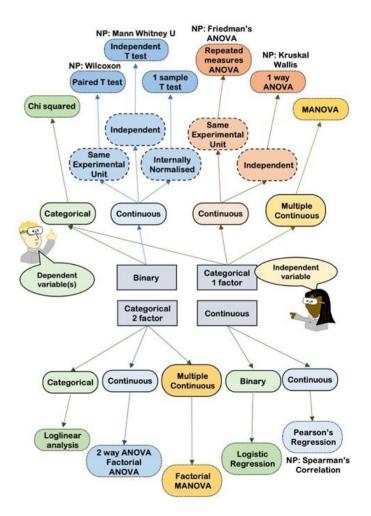
ANOVA ANalysis Of VAriance

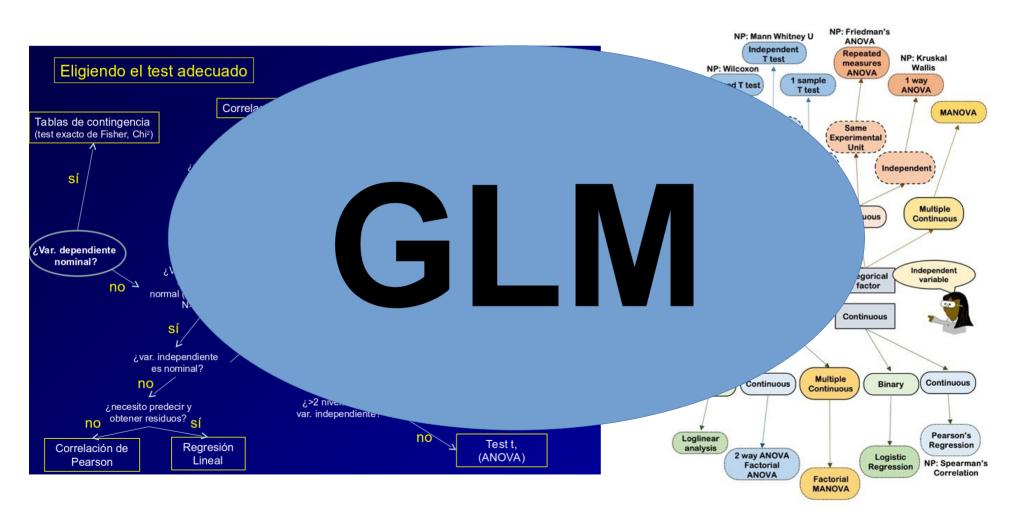
El ANOVA (y similares como ANCOVA, etc.) puede verse como un caso concreto de un modelo general lineal, en el que todos nuestros predictores son categóricos. Por eso, es más cómodo y didáctico entender todos estos tests como casos concretos de un marco de modelización general (GLM).

- 1) Evitamos memorizar numerosos nombres de tests estadísticos.
- 2) Nos obliga a pensar sobre nuestro diseño/variables.
- 3) Crea un marco mental más constructivo.

Modelo	Variables predictoras	Tipo de respuesta	Propósito principal
ANOVA	Categóricas	Continua (normal)	Comparar medias entre grupos
Regresión lineal	Continuas	Continua (normal)	Predecir Y en función de X
ANCOVA	Categóricas + continuas	Continua (normal)	Comparar medias ajustando por covariables
GLM	Categóricas + continuas	Continua (normal)	Marco general que los contiene







Common statistical tests are linear models

Last undated: 02 April 2010

See worked examples and more details at the accompanying notebook: https://lindeloev.github.io/tests-as-linear

	Common name	Built-in function in R	Equivalent linear model in R	Exact?	The linear model in words	Icon
Im(y ~ 1 + x)	y is independent of x P: One-sample t-test N: Wilcoxon signed-rank	t.test(y) wilcox.test(y)	Im(y ~ 1) Im(signed_rank(y) ~ 1)	for N >14	One number (intercept, i.e., the mean) predicts y (Same, but it predicts the <i>signed rank</i> of y .)	;; <u>*</u>
	P: Paired-sample t-test N: Wilcoxon matched pairs	t.test(y ₁ , y ₂ , paired=TRUE) wilcox.test(y ₁ , y ₂ , paired=TRUE)	$Im(y_2 - y_1 \sim 1)$ $Im(signed_rank(y_2 - y_1) \sim 1)$	√ f <u>or N >14</u>	One intercept predicts the pairwise y_z - y_1 differences (Same, but it predicts the <i>signed rank</i> of y_z - y_1 .)	*
regression:	y ~ continuous x P: Pearson correlation N: Spearman correlation	cor.test(x, y, method='Pearson') cor.test(x, y, method='Spearman')	$Im(y \sim 1 + x)$ $Im(rank(y) \sim 1 + rank(x))$	√ for N >10	One intercept plus x multiplied by a number (slope) predicts y (Same, but with <i>ranked</i> x and y)	نبتلجبس
Simple r	y ~ discrete x P: Two-sample t-test P: Welch's t-test N: Mann-Whitney U	t.test(y ₁ , y ₂ , var.equal=TRUE) t.test(y ₁ , y ₂ , var.equal=FALSE) wilcox.test(y ₁ , y ₂)	$\begin{split} & Im(y\sim 1+G_2)^A \\ & gls(y\sim 1+G_2, weights=^B)^A \\ & Im(signed_rank(y)\sim 1+G_2)^A \end{split}$	√ √ for N >11	An intercept for group 1 (plus a difference if group 2) predicts y . - (Same, but with one variance <i>per group</i> instead of one common.) - (Same, but it predicts the <i>signed rank</i> of y .)	*
x ₂ +)	P: One-way ANOVA N: Kruskal-Wallis	aov(y ~ group) kruskal.test(y ~ group)	$\begin{aligned} & Im(y\sim 1+G_2+G_3++G_N)^A \\ & Im(rank(y)\sim 1+G_2+G_3++G_N)^A \end{aligned}$	√ for N >11	An intercept for group 1 (plus a difference if group ≠ 1) predicts y . - (Same, but it predicts the <i>rank</i> of y .)	i, t †
~ 1 + x ₁ +	P: One-way ANCOVA	aov(y ~ group + x)	$Im(y \sim 1 + G_2 + G_3 + + G_N + x)^A$	~	- (Same, but plus a slope on x.) Note: this is discrete AND continuous. ANCOVAs are ANOVAs with a continuous x.	THE PARTY NAMED IN
lm(y	P: Two-way ANOVA	aov(y ~ group * sex)	$\begin{split} & \text{Im}(y \sim 1 + G_2 + G_3 + \ldots + G_N + \\ & S_2 + S_3 + \ldots + S_K + \\ & G_2^* S_2 + G_3^* S_3 + \ldots + G_N^* S_K) \end{split}$	*	Interaction term: changing \mathbf{sex} changes the $\mathbf{y} \sim \mathbf{group}$ parameters. Note: G_{2nN} is an $\underline{indicator}$ (0 or 1) for each non-intercept levels of the \underline{group} variable. Similarly for S_{2nN} for sex. The first line (with G_0) is main effect of \underline{group} , the second (with S_0) for sex and the third is the $\underline{group} \sim \underline{sex}$ interaction. For two levels (e.g. male/female), line 2 would just be " S_2 " and line 3 would be S_2 multiplied with each G_n .	[Coming]
Multiple regression:	Counts ~ discrete x N: Chi-square test	chisq.test(groupXsex_table)	Equivalent log-linear model $glm(y \sim 1 + G_2 + G_3 + + G_N + G_2 + S_3 + + S_K + G_2 * S_2 + G_3 * S_3 + + G_N * S_K, family =)^A$	*	Interaction term: (Same as Two-way ANOVA.) Note: Run glm using the following arguments: $g1m(mode1, fami1y=poisson())$ As linear-model, the Chi-square test is $log(y) = log(N) + log(a) + log(\beta) + log(a\beta)$ where a_i and b_i are proportions. See more info in the accompanying notebook.	Same as Two-way ANOVA
M	N: Goodness of fit	chisq.test(y)	glm(y ~ 1 + G_2 + G_3 ++ G_N , family=) ^A	✓	(Same as One-way ANOVA and see Chi-Square note.)	1W-ANOVA

List of common parametric (P) non-parametric (N) tests and equivalent linear models. The notation $y \sim 1 + x$ is R shorthand for $y = 1 \cdot b + a \cdot x$ which most of us learned in school. Models in similar colors are highly similar, but really, notice how similar they all are across colors! For non-parametric models, the linear models are reasonable approximations for non-small sample sizes (see "Exact" column and click links to see simulations). Other less accurate approximations exist, e.g., Wilcoxon for the sign test and Goodness-of-fit for the binomial test. The signed rank function is $signed_rank = function(x) sign(x) * rank(abs(x))$. The variables G_i and G_i are "dummy coded" indicator variables (either 0 or 1) exploiting the fact that when $\Delta x = 1$ between categories the difference equals the slope. Subscripts (e.g., G_i or g_i) indicate different columns in data. Im requires long-format data for all non-continuous models. All of this is exposed in greater detail and worked examples at https://lindeloey.github.jo/tests-as-linear.

B Same model, but with one variance per group: gls(value ~ 1 + G2, weights = varIdent(form = ~1|group), method="ML").

A See the note to the two-way ANOVA for explanation of the notation.

Caso práctico: fungicidas triazoles en heces de perdiz

Los fungicidas triazoles son compuestos químicos que se aplican habitualmente en semillas de cultivos para prevenir el crecimiento de hongos patógenos de plantas. Sin embargo, cuando las semillas son consumidas por la fauna silvestre, estos compuestos pueden producir efectos crónicos perjudiciales en su sauld y desarrollo. Queremos estudiar el efecto de los fungicidas triazoles sobre la condición corporal (peso) en perdices rojas (*Alectoris rufa*). Para ello se han capturado un total de 300 perdices en tres hábitats diferentes (semiurbano, agrícola y monte matorralizado) a las que se les ha sexado y extraido muestras de heces para obtener la concentración de fungicidas triazoles (ngramos de compuesto/gramo de heces).

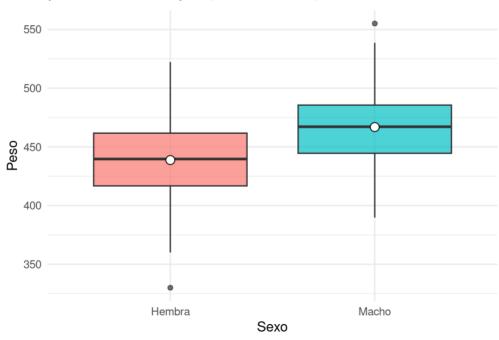
Caso práctico: fungicidas triazoles en heces de perdiz

- Pensar variables: respuesta y predictores. Tipos de variables
- Construir un modelo desde lo sencillo a lo complejo
- Gráficos diagnóstico y bondad de ajuste

$$ext{peso}_i \sim ext{Normal}(\mu_i, \sigma) \ \mu_i = eta_0 + eta_1 \, I(ext{sex}_i = ext{Macho})$$

Paso 1: Solo sexo

 β_0 = media Hembra; β_1 = (Macho - Hembra)

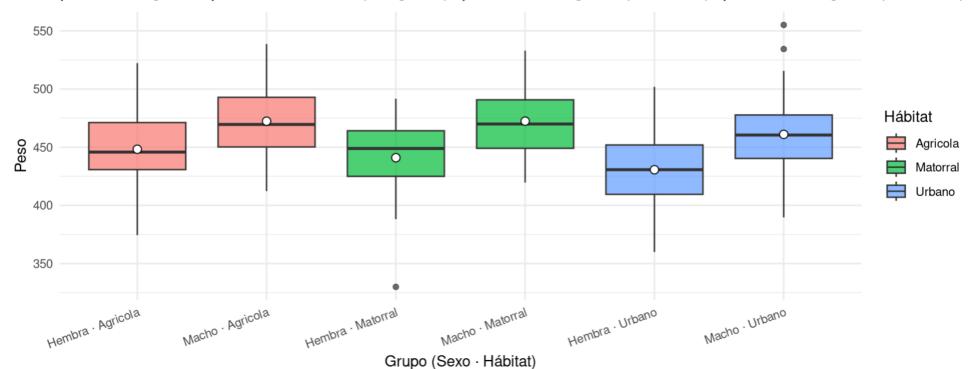


$$ext{peso}_i \sim ext{Normal}(\mu_i, \sigma)$$

$$\mu_i = \beta_0 + \beta_1 I(\text{sex}_i = \text{Macho}) + \beta_2 I(\text{hab}_i = \text{Matorral}) + \beta_3 I(\text{hab}_i = \text{Urbano})$$

Paso 2: Sexo + Hábitat (6 cajas)

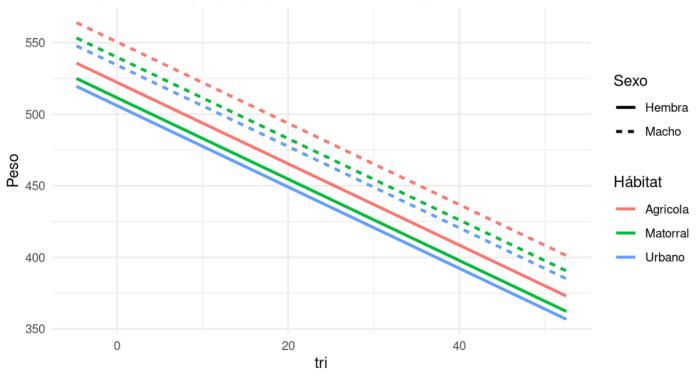
 β_0 : Hembra-Agrícola; β_1 : Macho vs Hembra (en Agrícola); β_2 : Matorral vs Agrícola (en Hembra); β_3 : Urbano vs Agrícola (en Hembra)



$$\mathrm{peso}_i \sim \mathrm{Normal}(\mu_i, \sigma)$$

$$\mu_i = eta_0 + eta_1 \, I(ext{sex}_i = ext{Macho}) + eta_2 \, I(ext{hab}_i = ext{Matorral}) + eta_3 \, I(ext{hab}_i = ext{Urbano}) + eta_4 \, ext{tri}_i$$

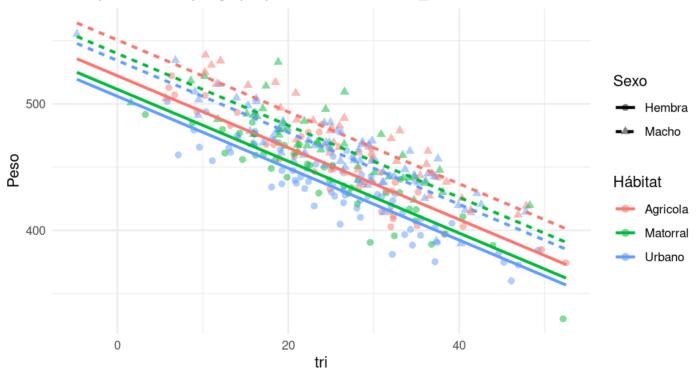
Paso 3: Misma pendiente para las 6 rectas (modelo: peso ~ sex + hab + tri_c)
Interceptos distintos por grupo; pendiente común de tri_c



$$\mathrm{peso}_i \sim \mathrm{Normal}(\mu_i, \sigma)$$

$$\mu_i = eta_0 + eta_1 \, I(ext{sex}_i = ext{Macho}) + eta_2 \, I(ext{hab}_i = ext{Matorral}) + eta_3 \, I(ext{hab}_i = ext{Urbano}) + eta_4 \, ext{tri}_i$$

Paso 3: Misma pendiente para las 6 rectas (modelo: peso ~ sex + hab + tri_c) Interceptos distintos por grupo; pendiente común de tri_c



$$\mathrm{peso}_i \sim \mathrm{Normal}(\mu_i, \sigma)$$

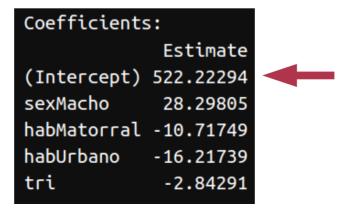
$$\mu_i = eta_0 + eta_1 \, I(ext{sex}_i = ext{Macho}) + eta_2 \, I(ext{hab}_i = ext{Matorral}) + eta_3 \, I(ext{hab}_i = ext{Urbano}) + eta_4 \, ext{tri}_i$$

$$\mu_{\text{nueva}}=$$

```
Coefficients:
Estimate
(Intercept) 522.22294
sexMacho 28.29805
habMatorral -10.71749
habUrbano -16.21739
tri -2.84291
```

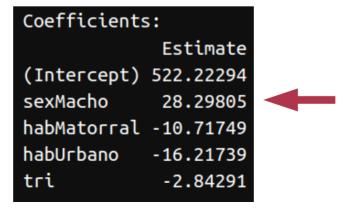
$$ext{peso}_i \sim ext{Normal}(\mu_i, \sigma) \ \mu_i = eta_0 + eta_1 \, I(ext{sex}_i = ext{Macho}) + eta_2 \, I(ext{hab}_i = ext{Matorral}) + eta_3 \, I(ext{hab}_i = ext{Urbano}) + eta_4 \, ext{tri}_i \$$

$$\mu_{\text{nueva}} = 522.22$$



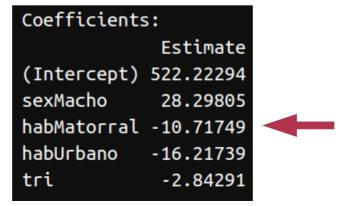
$$ext{peso}_i \sim ext{Normal}(\mu_i, \sigma) \ \mu_i = eta_0 + eta_1 \, I(ext{sex}_i = ext{Macho}) + eta_2 \, I(ext{hab}_i = ext{Matorral}) + eta_3 \, I(ext{hab}_i = ext{Urbano}) + eta_4 \, ext{tri}_i \$$

$$\mu_{\text{nueva}} = 522.22 + (28.3 * 1)$$



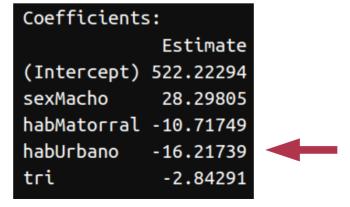
$$ext{peso}_i \sim ext{Normal}(\mu_i, \sigma) \ \mu_i = eta_0 + eta_1 \, I(ext{sex}_i = ext{Macho}) + eta_2 \, I(ext{hab}_i = ext{Matorral}) + eta_3 \, I(ext{hab}_i = ext{Urbano}) + eta_4 \, ext{tri}_i \$$

$$\mu_{\text{nueva}}$$
=522.22 + (28.3 * 1) + (-10.72 * 0)



$$ext{peso}_i \sim ext{Normal}(\mu_i, \sigma) \ \mu_i = eta_0 + eta_1 \, I(ext{sex}_i = ext{Macho}) + eta_2 \, I(ext{hab}_i = ext{Matorral}) + eta_3 \, I(ext{hab}_i = ext{Urbano}) + eta_4 \, ext{tri}_i \$$

$$\mu_{\text{nueva}}$$
=522.22 + (28.3 * 1) + (-10.72 * 0) + (-16.22 * 1)



$$\mathrm{peso}_i \sim \mathrm{Normal}(\mu_i, \sigma)$$

$$\mu_i = eta_0 + eta_1 \, I(ext{sex}_i = ext{Macho}) + eta_2 \, I(ext{hab}_i = ext{Matorral}) + eta_3 \, I(ext{hab}_i = ext{Urbano}) + eta_4 \, ext{tri}_i$$

$$\mu_{\text{nueva}}$$
=522.22 + (28.3 * 1) + (-10.72 * 0) + (-16.22 * 1) + (-2.84 * 6)

```
Coefficients:
Estimate
(Intercept) 522.22294
sexMacho 28.29805
habMatorral -10.71749
habUrbano -16.21739
tri -2.84291
```

$$\mathrm{peso}_i \sim \mathrm{Normal}(\mu_i, \sigma)$$

$$\mu_i = eta_0 + eta_1 \, I(ext{sex}_i = ext{Macho}) + eta_2 \, I(ext{hab}_i = ext{Matorral}) + eta_3 \, I(ext{hab}_i = ext{Urbano}) + eta_4 \, ext{tri}_i$$

$$\mu_{\text{nueva}}$$
=522.22 + (28.3 * 1) + (-10.72 * 0) + (-16.22 * 1) + (-2.84 * 6)

```
Coefficients:
Estimate
(Intercept) 522.22294
sexMacho 28.29805
habMatorral -10.71749
habUrbano -16.21739
tri -2.84291
```

AIC (an information criterion)

Una medida que evalúa qué tan bien nuestro modelo explica nuestros datos equilibrando:

- El **ajuste** del modelo (goodness of fit).
- La complejidad del modelo (cuántos parámetros debe estimar)

$$\mathrm{AIC} = 2k - 2\ln(\hat{L})$$

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle.

In: **Second International Symposium on Information Theory**, edited by B. N. Petrov and F. Csaki, Akademiai Kiado, Budapest, pp. 267–281.

AIC (an information criterion)

Una medida que evalúa qué tan bien nuestro modelo explica nuestros datos equilibrando:

- El **ajuste** del modelo (goodness of fit).
- La **complejidad** del modelo (cuántos parámetros debe estimar)

$$AIC = 2k - 2\ln(\hat{L})$$

Nº de parámetros (complejidad)

AIC (an information criterion)

Una medida que evalúa qué tan bien nuestro modelo explica nuestros datos equilibrando:

- El ajuste del modelo (goodness of fit).
- La complejidad del modelo (cuántos parámetros debe estimar)

$$ext{AIC} = 2k - 2\ln(\hat{L})$$

Ajuste

AIC (an information criterion)

Una medida que evalúa qué tan bien nuestro modelo explica nuestros datos equilibrando:

- El ajuste del modelo (goodness of fit).
- La complejidad del modelo (cuántos parámetros debe estimar).

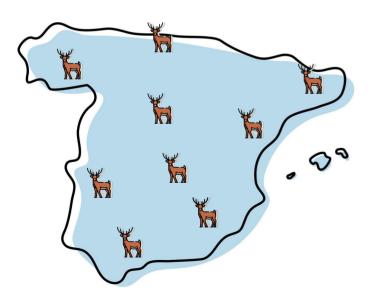
$$ext{AIC} = 2k - 2\ln(\hat{L})$$

- Menor AIC = mejor modelo (comparativamente).
- Diferencias menores de 2 puntos de AIC se consideran modelos equivalentes.
- Existe una versión corregida para muestras pequeñas (AIC $_{
 m C}$). n/k < 40 AIC $_{
 m C}$ = AIC $_{
 m C}$ + $rac{2k(k+1)}{n-k-1}$

MÁS ALLÁ DE LA DISTRIBUCIÓN NORMAL

Distribución de la variable respuesta

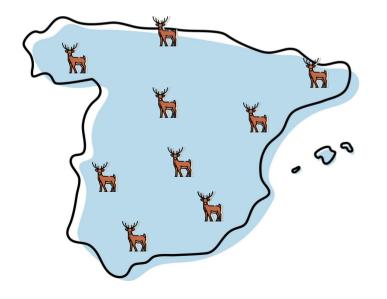
Hasta ahora hemos utilizado la distribución Normal o Gaussiana para modelizar nuestra variable respuesta, pero no siempre es la más adecuada...



MÁS ALLÁ DE LA DISTRIBUCIÓN NORMAL

Distribución de la variable respuesta

Hasta ahora hemos utilizado la distribución Normal o Gaussiana para modelizar nuestra variable respuesta, pero no siempre es la más adecuada...



- N.º de agresiones entre gallinas dependiendo del fenotipo.
- Riqueza de sp. de musgos en función de diferentes variables edáficas.
- N.º de germinados/plántulas dependiendo de la influencia de una presa.

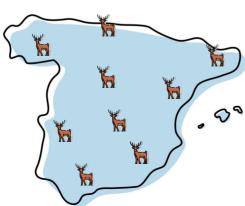
MÁS ALLÁ DE LA DISTRIBUCIÓN NORMAL

Distribución de la variable respuesta

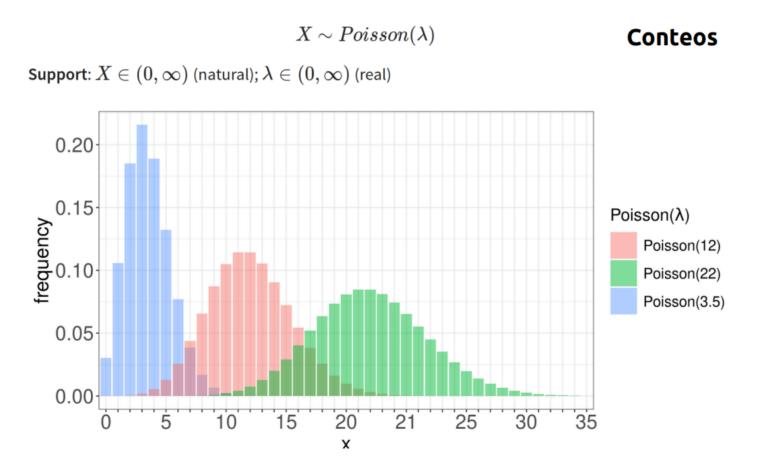
Hemos muestreado 500 cuadrículas de 1x1km contando los ciervos que hemos visto en cada una de ellas... Creemos que el número de ciervos ya a estar relacionado con la temperatura en cada uno de los sitios de muestreo.

Si quisiéramos simular esta situación, ¿qué distribución de probabilidad

podríamos utilizar?



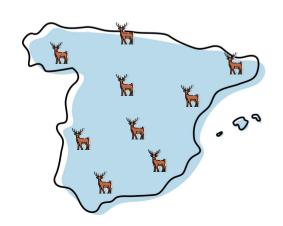
Distribución de la variable respuesta



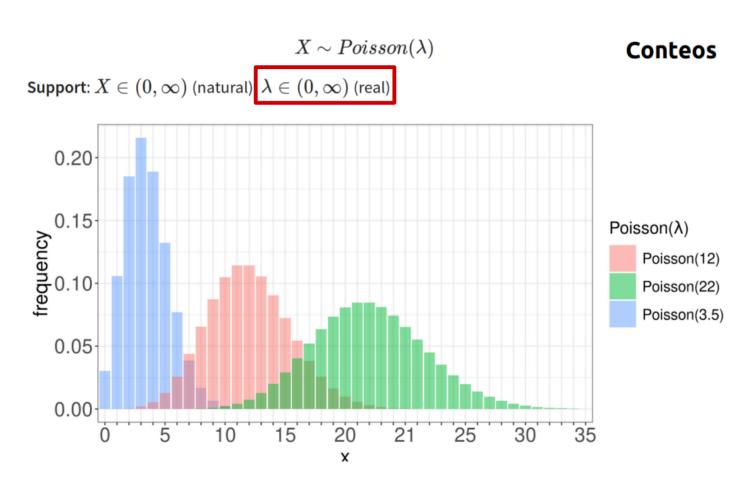
Distribución de la variable respuesta: Poisson

$$N_i \sim Poisson(\lambda_i)$$

$$\lambda_i = \beta_0 + \beta_1 Temperatura_i$$



Distribución de la variable respuesta: Poisson



Distribución de la variable respuesta: Poisson

$$N_i \sim Poisson(\lambda_i)$$
 = $eta_0 + eta_1 Temperatura_i$

$$log(\lambda_i) = eta_0 + eta_1 Temperatura_i$$



Poner definició n de función vinculo

Funciones vínculo

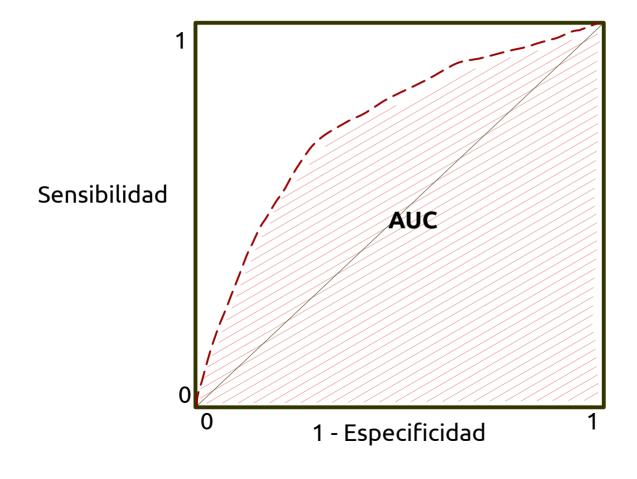
Podemos usar cualquier otra distribución utilizando la misma maquinaria, simplemente se necesitarán funciones vínculo (links) diferentes para unir las covariables con parámetros de cada distribución: log, logit, etc.

Distribución	Links	Fórmula	Inversa
Gaussiana (μ,σ)	Identidad	$\mu=eta X$	$\mu=eta X$
Poisson(λ)	Log	$log(\lambda)=eta X$	$\lambda = e^{(eta X)}$
Bernoulli(p)	Logit , probit, cloglog	$log(rac{p}{1-p})=eta X$	$p=rac{e^{(eta X)}}{1+e^{(eta X)}}$
Binomial(<i>n</i> , <i>p</i>)	Logit , probit, cloglog	$log(rac{p}{1-p})=eta X$	$p=rac{e^{(eta X)}}{1+e^{(eta X)}}$

Evaluación de modelos binomiales: AUC

- Es una medida que evalúa la capacidad discriminativa de un modelo binomial, es decir, cómo de bien distingue entre éxitos y fracasos. Sus valores van entre 0 y 1, donde 0.5 indicaría que su discriminación es azarosa, 0 sería que el modelo equivoca absolutamente todos los casos, y 1 indicaría que el modelo es capaz de predecir perfectamente nuestros datos.
- Tiene muchos puntos débiles: umbral de decisión, igualdad entre errores de omisión y comisión, etc., pero es sencillo de implementar e interpretar.

Evaluación de modelos binomiales: AUC



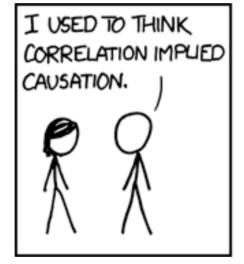
Sensibilidad: clasificar los positivos correctamente como positivos.

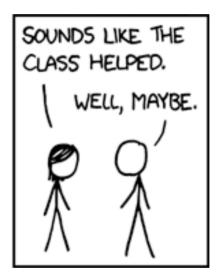
Especificidad: clasificar los negativos correctamente como negativos.

Con vuestros datos...

- Estudia tu variable respuesta. ¿Qué tipo es? Continua, categórica, admite decimales, valores negativos... ¿Puedo hacer un histograma con ella? ¿Qué pinta tiene?
- ¿Que distribución de probabilidad es la más conveniente para mi variable respuesta?
- Si es posible, elige dos predictores, uno continuo y otro categórico (en el caso de no disponer de esos tipos, elige dos predictores cualesquiera). Examina los predictores (histogramas, boxplot, gráficos de dispersión frente a la variable respuesta).
- Ajusta 4 modelos: el modelo nulo (~1), uno con cada variable y uno con ambas.
- Estudia: gráficos diagnóstico, p-valores, coeficientes para cada predictor, y devianza.

CORRELACIÓN EN LOS PREDICTORES

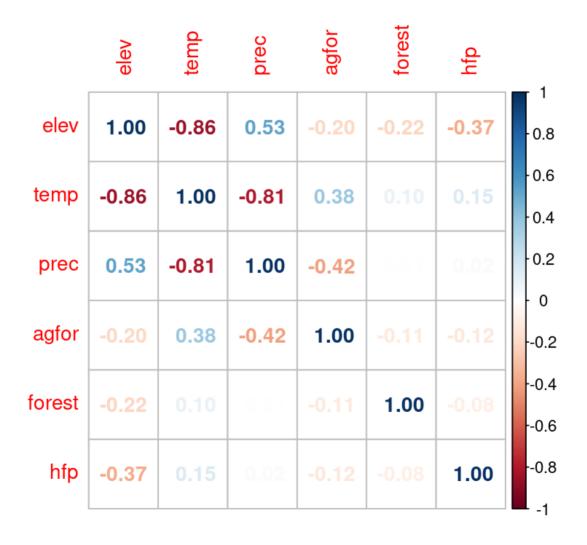




CORRELACIÓN EN LOS PREDICTORES

- Recordamos que lo que hacemos al modelizar es intentar relacionar una información (datos) con una serie de predictores, "repartiendo" el poder explicativo o predictivo entre cada uno de ellos.
- Sin embargo, si dos predictores contienen la misma información, es lógico que el modelo no tenga siempre claro cómo repartir ese poder explicativo... ya que ambos dicen lo mismo!
- La correlación entre (o "colinealidad en") predictores puede producir inestabilidad en las estimas de los coeficientes del modelo o un aumento de la incertidumbre en esas estimas.
- No es algo que "tengamos que eliminar", sino algo que debemos tener en cuenta a la hora de realizar inferencias a partir de nuestro modelo. Suele afectar a las estimas de los coeficientes del modelo, pero su poder predictivo no tiene por qué verse afectado.

CORRELACIÓN EN LOS PREDICTORES



El VIF (Variance Inflation Factor) es una forma sencilla y bonita de determinar si la información de un predictor ya está contenida en el conjunto del resto de predictores.

$$\mathrm{VIF}_j = rac{1}{1 - R_j^2}$$

Cuanto mayor el es VIF, más redundante es nuestro predictor entre el conjunto de todos los predictores del modelo. Hay diferentes umbrales, pero VIF mayores de 4 suelen considerarse altos.

La función vif() del paquete de R car implementa el GVIF (Fox & Monette, 1992), que admite también predictores categóricos.

MODELIZACIÓN DE RELACIONES NO LINEALES

- Una de las asunciones de los modelos lineales era, precisamente, que la relación entre los predictores y la variable respuesta era lineal. Sin embargo, en la mayoría de situaciones esto no es completamente cierto.
- Se pueden incluir términos polinomiales (predictor + predictor² + predictor³) para conseguir un efecto no lineal de los predictores. Sin embargo, hay que tener en cuenta el aumento en el número de parámetros a estimar.
- Otra opción es utilizar *splines* mediante General Additive Models. De igual forma, este tipo de modelos puede hacer más complejas las interpretaciones... Se debe atender al compromiso entre explicación y predicción.

SOBREAJUSTE

¡Ojo con el sobreajuste!

